skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fagbemi, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Numerical modelling of deformation in hydromechanical systems can be time-consuming using fully coupled classical numerical methods for large representative porous media samples. In this paper, we present a new two-way coupled partitioned fluid–solid system. The coupled system is applied for simulating geomechanical processes at the pore-scale. We track the deformation of the solid resulting from the drainage of resident fluids in the pores, as well as the evolution of fluid properties from dynamic loading. The finite element method is responsible for capturing the structural deformation in the coupled system while the dynamic pore network is used for modelling multiphase flow in the fluid subsystem. A fictitious fluid–solid interface is created at each pore network-finite element node junction via convex hulling, followed by data exchange using linear interpolation. The results show good agreement with a pre-existing coupled finite volume model and the computations are completed in much less time. 
    more » « less